AMINES

Questions and answers

- ally ammes NH₂ N(CH3)2 (ii)
- 1. Classify the following as primary, secondary and tertiary amines.

Ans: i) primary ii) tertiary iii) primary iv)secondary

2. Write the structures of different isomeric amines corresponding to the molecular formula, C4H11N. i) Write the IUPAC names of all the isomers.

Ans: Eight isomeric amines are possible

1 1 2 .	CH ₃	¹ CH ₃	
(i) $\ddot{C}H_3 - \ddot{C}H_2 - \ddot{C}H_2 - \ddot{C}H_2 - NI$	H_2 (<i>ii</i>) $H_3 = CH = CH_2 = NH_2$ (<i>ii</i>) $H_3 = CH = CH_2 = NH_2$ (<i>ii</i>)	$\frac{4}{10}$ $\frac{3}{CH_2}$ $\frac{2}{CH_2}$ $\frac{2}{CH_2}$ $\frac{1}{CH_2}$ $\frac{1}{$	
Butan-1-amine (Primary)	2-Methylpropan-1-amine (Primary)	Butan-2-amine (Primary)	
¹ CH ₃	C ₂ H ₅	ĊН ₃	
(iv) $CH_3 - C - NH_2$ $3^{\dagger}_{CH_3}$	(v) $C_2H_5 - N - H$ (v)	i) C ₃ H ₇ —N—H	
2-Methylpropan-2-amine	N-Ethylethanamine	N-Methylpropan-1-amine	
(Primary)	(Secondary)	(Secondary)	
CH3	C ₂ H ₅		
(vii) CH ₃ -CH-NH-CH ₃	(viii) CH ₃ -N-CH ₃		
N-Methylpropan-2-amine	N, N-Dimethylethanamine		
(Secondary)	(Tertiary)		

(iii) (C2H5)2CHNH2

(iv) (C2H5)2NH

3.pKb of aniline is more than that of methylamine, why. Ans.Because aniline is less basic than methylamine due to stabilisation lone pair of N by resonance effect.

4. Arrange the following in increasing order of their basic strength: (i) C₂H₅NH₂, C₆H₅NH₂, NH₃, C₆H₅CH₂NH₂ and (C₂H₅)₂NH (ii) C₂H₅NH₂, (C₂H₅)₂NH, (C₂H₅)₃N, C₆H₅NH₂ (iii) CH₃NH₂, (CH₃)₂NH, (CH₃)₃N, C₆H₅NH₂, C₆H₅CH₂NH₂.

Ans. (i) C₆H₅NH₂ < NH₃ < C₆H₅CH₂NH₂ < C₂H₅NH₂ < (C₂H₅)₂NH

(ii) $C_6H_5NH_2 < C_2H_5NH_2 < (C_2H_5)_3N < (C_2H_5)_2NH$ (iii) $C_6H_5NH_2 < C_6H_5CH_2NH_2 < (CH_3)_3N < CH_3NH_2 < (CH_3)_2NH$

5. Arrange the following:

(i) In decreasing order of the pKb values: $C_2H_5NH_2$, $C_6H_5NHCH_3$, $(C_2H_5)_2NH$ and $C_6H_5NH_2$ (ii) In increasing order of basic strength: $C_6H_5NH_2$, $C_6H_5N(CH_3)_2$, $(C_2H_5)_2NH$ and CH_3NH_2 Ans. (i) $C_6H_5NH_2 > C_6H_5NHCH_3 > C_2H_5NH_2 > (C_2H_5)_2NH$ (ii) $C_6H_5NH_2 < C_6H_5N(CH_3)_2 < CH_3NH_2 < (C_2H_5)_2NH$

6. Arrange the following: In increasing order of basic strength:

(i) Aniline, p-nitroaniline and p-toluidine

(ii) C₆H₅NH₂, C₆H₅NHCH₃, C₆H₅CH₂NH₂.

Ans. (i) p-nitroaniline < Aniline < p-toluidine

(ii) C₆H₅NH₂< C₆H₅NHCH₃< C₆H₅CH₂NH₂.

7. Arrange thr following In decreasing order of basic strength :

(i) $C_2H_5NH_2$, $(C_2H_5)_2NH$, NH_3 , $(C_2H_5)_3N$

(ii) $(CH_3)_2NH$, $(CH_3)_3N$, NH_3 , CH_3NH_2

Ans. (i) $(C_2H_5)_2NH > (C_2H_5)_3N > C_2H_5NH_2 > NH_3$

ii. (CH₃)₂NH > CH₃NH₂> (CH₃)₃N > NH₃

8. Why are amines basic in character?

Ans. Like ammonia, the nitrogen atom in amines RNH2is trivalent and bears an unshared pair of electrons. Thus it acts like a Lewis base and donates the pair of electrons to electron- deficient species which further increases due to +I effect of alkyl radical.

9. Arrange the following in decreasing order of the basic strength:

C6H5NH2,C2H5 NH2,(C2H5)2NH,NH3

Ans.The decreasing order of basic strength of the above amines and ammonia follows the following order: (C2H5)2NH >C2H5NH2>NH3>C6H5NH2

10. Write chemical equations for the following conversions:
(i)CH3 –CH2 –Cl into CH3–CH2 –CH2 –NH2
(ii)C6H5–CH5 –Cl into C6H5 –CH2 –CH2 –NH2

(i)	CH3-CH2-Cl Etha	$\xrightarrow{\text{anolic NaCN}}$ CH ₃ -0	$CH_2-C \equiv N \xrightarrow{\text{reduction}} CH_3-CH_2-CH_2-NH_2$		
	Chloroethane Pro		panenitrile	Propan-1-amine	
(ii)	C ₆ H ₅ -CH ₂ -Cl	Ethanolic NaCN	$C_6H_5-CH_2-C\equiv N$	$\xrightarrow{H_2/Ni}$	C ₆ H ₅ -CH ₂ -CH ₂ -NH ₂
	Chlorophenylmeth (Benzyl chloride	iane e)	Phenylethanenitrile (Benzyl cyanide)		2-Phenylethanamine

11. Write the reactions of (i)aromatic and(ii) aliphatic primary amines with nitrous acid.

Ans.(i)Aromatic amines react with nitrous acid(prepared in situ from NaNO2and a mineral acid such as HCl) at 273–278K to form stable aromatic diazonium salts i.e., NaCl and H2O.

(ii)Aliphatic primary amines react with nitrous acid (prepared in situ from NaNO2and a mineral acid such as HCl) to form unstable aliphatic diazonium salts, which further produce alcohol and HCl with the evolution of N2gas.

- 12. How will you convert
- (i)Nitromethane into dimethylamine
- (ii) Propanoicacid into ethanoicacid?

13. Why cannot aromatic amines be prepared by Gabriel phthalimide reaction?

Ans: In Gabriel phthalimidereaction, potassium salts of phthalimide is formed. It readily reacts with alkyl halides to form corresponding alkyl derivatives.

But it is not in a position to react with the aryl halide in case primary aromatic amines is to be prepared. Actually the cleavage of C-X bond in haloarene or aryl halide is quite difficult due to partial double bond character. Therefore, aromatic amines cannot be prepared by this method.

14. Why are amines less acidic than alcohols of comparable molecular masses?

Ans: The acidic character in both cases is due to the release of H⁺ ion. Now, the anion in case of amine

 $R \longrightarrow NH2 \longrightarrow R \longrightarrow NH^- + H^+$

Amines

 $\text{R-OH-} \rightarrow \text{R-O}^- + \text{H} +$

RO⁻ ion is more stable than RNH⁻ ion because oxygen is more electronegative than nitrogen atom. Consequently alcohols are more stronger acid than amines.

15. What is the best reagent to convert nitrile into primary amines?

Ans: Lithium aluminium hydride (LiAIH4) dissolved in anhydrous ether is the best reagent to convert a nitrile into primary amines.

By A. P MANDAL